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GUIDELINES FOR DATA REDUCTION
FOR TEM RESULTS FOR LIBBY AMPHIBOLE IN AIR AND DUST SAMPLES

AT THE LIBBY SUPERFUND SITE

1.0 INTRODUCTION

When people are exposed to a chemical contaminant in an environmental medium, the long-term
average level of exposure is usually assumed to be proportional to the average concentration in the
area where exposure occurs. The area where exposure occurs is usually referred to as the Exposure
Point, and the average concentration within the area is referred to as the Exposure Point
Concentration (EPC). Typically, the EPC is estimated based on a set of measured values of the
medium collected from the Exposure Point. However, the simple average of the measured values is
only an estimate of the true mean, and the true mean may be either higher or lower. This is because
the measured value in each sample may not be identical to the true concentration of each sample
("measurement error"), and because the set of samples collected from the Exposure Point are only a
random subset of the entire set of values that occur in the Exposure Area ("sampling variability").

The USEPA has derived standard methods for computing the EPC at Superfund sites (USEPA
1989, 1992, 2002, 2004). In brief, the EPC is usually defined as the 95% upper confidence limit
(UCL) on the mean, computed using appropriate statistical techniques. This approach helps
minimize the likelihood that exposure and risk calculations performed for an exposure area will
underestimate the true risk in that exposure unit. In some cases, especially when data are limited,
the 95% UCL may substantially exceed the highest value observed, and in this situation, EPA
recommends that the maximum detected value, rather than the 95% UCL, be used as the EPC.

However, existing guidance for computation of EPCs was developed mainly for use with chemical
contaminants that are measured using traditional "wet chemistry" methods. At the Libby Superfund
Site, the contaminant of chief concern is a form of asbestos referred to as Libby Amphibole (LA),
and asbestos is measured using microscopic rather than chemical techniques. Because of this, there
are several aspects of the procedure for computing exposure point concentrations of LA values that
differ from the approaches used for other chemicals.
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This document reviews these asbestos-specific issues associated with the derivation of
concentration estimates for LA for use in exposure and risk calculations, and identifies the
recommended strategy for data reduction at the Libby Superfund Site.

Note that the methods and conclusions presented in this document should not necessarily be
assumed to apply to other forms of asbestos or to data from other sites.

2.0 BASIC EQUATIONS

When samples of air or dust are analyzed for asbestos using microscopic techniques such as
transmission electron microscopy (TEM), the results are expressed in terms of the number of
asbestos structures observed (N) divided by the total amount of sample examined (e.g., cc of air for
air samples, cm2 of surface for dust samples).

C(air) (s/cc) = N / Volume of air (cc)
C(dust)1 (s/cm2) = N / Area of surface (cm2)

For convenience, analytical sensitivity (S) is defined the inverse of volume or area examined:

S(air) = 1 / Volume of air (cc)
S(dust) = 1 / Area of surface (cm2)

Thus, concentration (both air and dust) is usually calculated as:

C = N - S

Note that sensitivity is a function only of the amount of sample examined, not of the amount of
asbestos in the sample:

S(a/r) (cc)"' =
_, EFA

GO-Ago-V

GO • Ago • Area

where:

1 Measures of the amount of LA in dust (s/cm2) are more accurately thought of as loading rather than concentration, but
for convenience, dust values are referred to as concentration in this document.
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EFA = Effective filter area (mm2)
GO = Number of TEM grid openings examined
Ago = Area of each TEM grid opening (mm2)
V = Volume of air passed through the filter (cc)
Area = Area of surface vacuumed onto the filter (cm2)

In principle, the sensitivity for any sample of air or dust can be reduced to any value desired simply
by examining more of the sample (i.e., by counting more grid openings), and there is no inherent
limit imposed by the instrument.

3.0 COMBINING RESULTS FROM MULTIPLE ANALYSES

3.1 Pooling Results for Multiple Analyses of a Single Sample (Same Analytical Method)

In the event that a single air sample has been analyzed more than one time (e.g., by initially
counting 10 grid openings and subsequently counting 40 additional grid openings in order to
improve the sensitivity), assuming that the same analytical method (i.e., preparation, counting rules,
etc.) was used in both analyses, the results may be combined by "pooling" the total counts observed
and the total volume examined, as follows:

C(air) (s/cc) = (Total structures observed) / (Total volume examined)

The equation for pooling dust concentration (loading) values is entirely analogous, except that
results are expressed in units of s/cm2 rather than s/cc.

3.2 Combining Results Across Multiple Samples (Same Analytical Method)

In cases where multiple samples (n) have been collected from a particular medium (e.g., air or dust)
at some specified exposure location, if it is assumed that the concentration of LA in that medium at
that location is approximately homogeneous, and if all of the samples were evaluated using the
same method (i.e., same preparation steps, counting protocols, etc.), the results may be pooled
across samples as described above for multiple analyses of the same sample. For example, this
approach may be appropriate for combining results for multiple samples of indoor air collected
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within the same room or building, since air within a room or building is often assumed to be
approximately homogeneous due to mixing and circulation.

In cases where it is not appropriate to assume that the concentration in a medium is homogeneous,
but may vary from sample to sample as a function of time or space, then the best estimate of the
mean concentration is obtained by computing the concentration for each sample, and then averaging
across all of the n samples from that location:

For example, in a location where indoor dust levels were clearly different between different floors
of a building, it might be appropriate to pool all dust values from each floor, then average across the
different floors in the building.

When results from multiple samples are combined by averaging or pooling, the scientific rationale
for the approach selected must be provided as part of the evaluation.

4.0 COMBINING RESULTS BETWEEN ISO 10312 AND AHERA COUNTING RULES

Over the course of the investigation at the Libby Site, two separate sets of counting rules have been
employed for TEM analysis of samples of air and dust: ISO 10312 (ISO 1995) and AHERA
(AHERA 1986)2. Thus, an issue of general importance is the degree to which results from different
counting methods are comparable, and whether it is appropriate to combine results obtained using
different counting rules. This issue applies both to individual samples that have been analyzed by
more than one approach, as well as to the comparison and combination of results across different
samples that have been evaluated by different methods.

The chief difference between ISO and AHERA counting rules is that some types of complex
structures (e.g., disperse clusters and matrices) are counted as single particles in AHERA, while
they are usually separated out into component substructures in ISO. Because of these differences
between the counting rules, analyses of samples by the AHERA method may tend to yield lower
concentration values than by ISO. However, there are several lines of evidence which suggest that,
at the Libby Site, differences between the ISO and AHERA counting methods are likely to be
minor.

2 In most cases, only particles with an aspect ratio of 5:1 or greater were recorded, as specified in the methods. For
some projects (e.g., Phase 2), counting rules were revised to require recording and counting of particles with an aspect
ratio of 3:1 or greater, as discussed in Laboratory Modifications LB-00016 and LB-000031. This variation in counting
rules over time is not believed to be a source of substantial uncertainty in the comparison of results across methods.
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Direct Comparison of Paired AHERA and ISO Analyses

As of November 6, 2006, a total of 1,869 samples of air have been analyzed by both AHERA and

by ISO counting rules. Appendix A (an electronic Excel spreadsheet) provides the data for all of
these samples. The results are summarized below:

Prep
Method

Direct
Indirect
Either

Total
Pairs

1837
32

1869

Results of Paired Comparison
Both Non-

Detect

1334
22

1356

One or Both
Detects

503
10

513

AHERA<ISO

23
0

23

AHERA=ISO

467
10

477

AHERA > ISO

13
0
13

As seen, most (1837 out of 1869) of the samples were direct preparations. Of these, most (1334)

were non-detect (ND) by both ISO and AHERA. Of those that were detects by one or both
methods, most (467 out of 503) were not statistically different. Of those that were different, there

were slightly more pairs where AHERA was lower than ISO (23 out of 503) than where AHERA
was higher than ISO (13 out of 503). For 32 samples with an indirect preparation, there were 10

samples with a detection by one or both methods, and 10 out of 10 of these were not statistically

different. These results support the conclusion that any differences between AHERA and ISO

counting rules for LA structures in air are likely.to be minimal for samples from the Libby Site.

For dust, only one paired ISO/AHERA result was located. The results for this sample were not

statistically different from each other. However, it is clear that one sample is not sufficient to

support a meaningful comparison.

Frequency of Particles Counted Differently

As noted above, the main difference between ISO and AHERA counting rules is that, in ISO, some

complex structures are broken down into their component elements, while in AHERA most

complex particles are counted as a single structure. However, at the Libby Site, the frequency with

which LA occurs in complex structures that would be counted differently by AHERA than by ISO
(disperse clusters and matrices with more than 1 substructure) is relatively low. Results of a query
performed on November 6, 2006, are provided below:

Medium Preparation
Method

Total Number
of LA Particles

% of ISO Particles that
would be Counted

Average Number of
Countable Sub-

Magnitude
of the
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Air

Dust

Direct
Indirect
Indirect

Observed

5310
962
2436

Differently by
AHERA

9.3%
6.4%
5.2%

structures per Primary
Particle

2.7
2.7
2.6

Difference

16%
11%
8%

As seen, only about 5%-9% of all LA structures identified in ISO analyses were of a particle type
that would have been counted differently by AHERA than ISO. For this subset of complex
particles, the average number of countable fibers or structures delineated by ISO was about 2,7 per
complex structure. Based on this, the expected average magnitude of the difference between ISO
and AHERA counts for air samples (direct preparation) is calculated as:

% Difference = 9.3% • (2.7 - 1.0) = 16%

Values for indirect air samples and dust samples are similar (8%-l 1%)

Based on this evaluation approach, differences between AHERA and ISO results are expected to be
generally small (< 20%) for both air and dust samples from the Libby Site.

Default Guideline

Based on the weight of evidence from the two lines of evidence cited above, it is concluded that
differences in LA particle counts between ISO and AHERA will generally be small, both for air and
dust, and that the benefit of combining the results across counting methods (decreased statistical
uncertainty due to larger sample size) will generally outweigh any minor bias or error that might be
introduced by combining the results. Thus, the default guideline is that results for ISO and AHERA
analyses may be compared and combined without adjustment, both within and between samples.
However, each data user must consider the pros and cons of this approach for their intended data
use, and document such considerations and supporting rationale when evaluating the data.

5.0 COMBINING AIR RESULTS FROM DIRECT AND INDIRECT PREPARATION

Most air samples at the Libby Site are analyzed using a direct preparation, but if the sample is
overloaded with particulate matter, an indirect preparation may be required. The primary issue
associated with combining or comparing the results of direct and indirect analyses is that the steps
used in the indirect preparation (e.g., suspension of the sample in water, usually accompanied by
sonication) may cause some asbestos structures to disaggregate into smaller particles, thereby
increasing the number of countable structures.
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A number of studies have been performed at other locations to investigate the effect of indirect
preparation on estimates of asbestos concentration. Useful reviews are provided in HEI-AR (1991)
and Breysse (1991). In general, the available data indicate that the magnitude of any difference
between a direct and an indirect preparation for a sample depends on the nature of the asbestos
(chrysotile vs. amphibole), and the details of the indirect preparation technique, especially the
duration and energy of sonication. For chrysotile, the magnitude of the increase in estimated
concentration (s/cc) due to indirect preparation is usually in the range of 2-100 fold (e.g., Hwang
and Wang 1983, Sahle and Laszlo 1986), but may sometimes be as large as 1000-2000-fold (e.g.,

Kauffer at al. 1996, Chesson and Hatfield 1990). The magnitude of the difference is often larger for
short particles (e.g., length < 5 um) than for longer particles (Hwang and Wang 1983, Chatfield
1985, Kauffer et al 1996). For amphiboles, differences between direct and indirect preparation are
generally much smaller (less than 10-fold) than for chrysotile (e.g., Bishop et al. 1978, Sahle and
Laszlo 1996).

Direct Comparison of Paired Air Samples from the Libby Site

At the Libby Site, very few air samples are analyzed by both direct and indirect preparations. As of
September 5, 2005, only 16 examples of this type existed in the Libby database. Appendix B
provides the data for these 16 samples. Of these 16 paired results, six were non-detect (ND) by
both direct and indirect preparations. Although these ND-ND pairs rank as "agreement" between
the direct and indirect preparation methods, it is more revealing to compare results for pairs in
which one or more analysis identified one or more LA structures. Of these (a total of 10 pairs), nine
of the 10 were not statistically different between direct and indirect preparations, and one of the 10
was statistically .higher for the indirect preparation than the direct preparation.

Because there were so few paired results in the existing database, especially for results that are not
ND-ND, a set of 31 air samples that had previously been analyzed by TEM (AHERA) using a direct
preparation method were selected for reanalysis by TEM (AHERA) using an indirect preparation
method to evaluate the potential effect of indirect preparation on the number and types of LA
structures observed in air samples from the Libby Site. Appendix C provides the basic study design
and describes how these samples were selected. Appendix D provides the detailed results for these
31 samples, both for the original direct analysis and the indirect reanalysis.

Table 1 summarizes the total LA results for these 31 samples, and the values are shown graphically
in Figure 1 (Panel A). When compared pair-wise, indirect preparation samples were statistically
higher (p < 0.05) than the matched direct preparation samples in 14 of 31 (45%) cases (red
symbols), were statistically lower in 7 of 31 (23%) cases (green symbols), and were not statistically
different in 10 of 31 (32%) of the cases (black symbols). The Wilcoxon signed rank test indicates
that the paired data sets (indirect vs. direct) are not significantly different from each other, although
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the difference is close to being significant (p = 0.07). As shown in Figure 1 (Panel B), if the
comparison is restricted to LA structures longer than 5 um, the frequency and magnitude of the
differences are diminished, but there are still a number of samples in which the indirect preparation
is several times higher than the direct preparation.

Particle Type and Size Evaluation

Another way to investigate the effect of indirect preparation is to examine the frequency of complex
particles observed in the 31 samples evaluated by both direct and indirect preparations:

Particle
Type

Fiber

Bundle
Cluster
Matrix

Percent of Total

Direct

72%
8%

0.1%
21%

Indirect

67%

1%
0.0%
32%

As seen, these data are consistent with the hypothesis that indirect preparation tends to decrease the
occurrence of bundles, but also indicate that there is an increase in the number of matrix particles,
perhaps due to breakup of large matrix particles into smaller matrix particles during sonication.

Figure 2 compares the length and width distributions for LA particles observed in the 31 samples
analyzed by both direct and indirect preparation. For length (upper panel), the distribution for LA
structures observed in indirect preparations tends to be left-shifted from that for direct preparations,
suggesting that indirect preparation may tend to cause breakage of some long LA fibers into shorter
fibers. This difference is statistically significant (Wilcoxon Rank Sum test, p < 0.001). For width
(lower panel), the distributions are generally similar to each other except at the high end, where
structures observed in indirect preparations tends to be thicker than for direct preparation. Although
the difference is significant (Wilcoxon Rank Sum test, p = 0.050), this observation is not expected
and may be due to random variation, since it is not apparent how an indirect preparation can cause
LA particles to become thicker.

Discussion

Based on the various lines of evidence described above, it is concluded that indirect preparations
may alter the estimated concentration of LA particles in samples of air. There is a general tendency
for LA concentrations to be increased by indirect preparation, although in some samples the
concentrations are apparently decreased. In many cases, the differences are within a factor of 2-3,
but some differences may be larger. The differences appear to be less important for long structures

8
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(> 5 um) than for total LA (where structures < 5 um in length are also presented). The basis for the
differences appears to be a complex interaction of multiple factors, including disaggregation of
some complex structures into fibers, breaking of some long structures into shorter structures, and

dispersion of large matrix particles into many smaller matrix particles. Because of these
differences, inclusion of data from indirect preparations in the computation of exposure point
concentrations for air may yield results that are different (usually higher, but sometimes lower) than
would be obtained if the data were from direct preparation samples only.

Default Guideline

Because most (>97%) of all air samples collected in Libby have been analyzed using the direct
preparation method, and because the difference between direct and indirect samples is usually
within a factor of 2-3 (especially for long fibers), any error introduced into exposure and risk
evaluations by use of occasional indirect data is likely to be minimal. Based on this, the default
guidance for the Libby Superfund Site is that results for direct and indirect preparations or air
samples may be compared and combined without adjustment, both within and between samples.
However, each data user must consider the pros and cons of this approach for their intended data
use, especially when the data for a particular location are based primarily on indirect data. In this
case, the uncertainty associated with reliance on indirect data and the potential direction and
magnitude of bias shall be discussed as part of any evaluation.

6.0 DEALING WITH SAMPLES WITH ZERO OBSERVED STRUCTURES

If zero structures are observed (N = 0) when a sample of air or dust is analyzed, this is generally
referred to as a "non-detect" result. For analytes other than asbestos, EPA suggests that, when
computing the mean of a set of samples, "non-detects" (i.e., samples whose concentration is below
the detection limit of the analytical instrument) be evaluated by assigning a surrogate value of/z the

detection limit (USEPA 1989). By analogy, it is sometimes supposed that "non-detects" for
asbestos should be evaluated by assigning a value equal to '/2 the sensitivity. However, this is not

correct. The analytical sensitivity in microscopic analyses is not analogous to a detection limit in a
wet chemistry analysis, and use of V* the sensitivity as a surrogate for asbestos non-detects may lead
to a substantial overestimate of the true mean of a group of samples.

This is demonstrated in Figure 3. As seen, in cases where the analytical sensitivity is larger than the
true concentration, if an asbestos non-detect is assigned a value equal to '/z the analytical sensitivity,
the estimate of the mean will be biased high, with the magnitude of the error tending to increase as
the ratio of sensitivity to true concentration increases. In cases where the analytical sensitivity is
less than about 1A the true concentration, the magnitude of the error introduced by assigning 1/2 the
sensitivity to non-detects becomes negligible.
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There are two reasons why a non-detect in microscopy is not analogous to a non-detect in a
traditional wet chemistry analysis, and should not be evaluated by assigning a value of '/2 the
sensitivity:

• A non-detect by a non-microscopic technique indicates that the amount of analyte present in
the fraction of the sample placed into the analytical instrument was less than the detection
limit, while a non-detect by a microscopic technique indicates that the amount of asbestos
present in the fraction of the sample evaluated under the microscope was truly zero. Note
that this statement is not inconsistent with the recognition that the observation of zero
structures in some particular set of grid openings examined does not prove that there are
zero structures in other grid opening that were not examined. This topic (uncertainty in the
observed number of structures observed) is discussed in Section 7 (below).

• The results of a wet chemistry method yield continuous values, while results of a
microscopic result yield discrete (discontinuous) values. That is, the concentration value
reported in a microscopic analysis can only occur in multiples of the analytical sensitivity S
(e.g., OS, IS, 2S, etc.). This means that when the true concentration of a sample is lower
than the sensitivity, any and all detects will yield concentrations that are higher than the true
value, rather than a reliable estimate of the true value. For example, consider the case where
the true concentration is 0.001 s/cc, and the sensitivity is 0.010 s/cc. If this sample were
analyzed 10 times, the expected result would be that about 9 of the 10 analyses would yield
a count of zero, and one of the samples would yield a count of 1, which would correspond to
a concentration estimate of 0.010 s/cc (10-times the truth). Only when the occasional high
values are averaged with the "non-detects" does the estimate of the mean approach the true
value.

This topic (the correct statistical approach for evaluating non-detect values from discontinuous
count-based measurement methods) has been reviewed by EPA previously as part of the rulemaking
process for microbial contamination in drinking water (USEPA 1999). (Note: measurement of
pathogens in water is closely analogous to measurement of asbestos structures in air, in that the
analysis is based on visual observation and yields discrete rather than continuous results). During a
public workshop held on this topic in 1998, a number of statistical experts provided information on
the correct methods for computing the concentration of Cryptosporidium in source waters of
drinking water supplies, given that some (most) of the individual samples were "non-detect" (i.e.,
no spores of Cryptosporidium were observed in the sample analyzed). The expert panel emphasized
that "non-detects" for Crytosporidium that occur in a set of water samples from a water system must
be evaluated with a value of zero when computing summary statistics on the mean level of
organisms present in the water.

10
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7.0 DEALING WITH UNCERTAINTY

As noted above, all estimates of environmental concentration values are uncertain because the
measured value in each sample may not be identical to the true concentration of each sample
("measurement error"), and because a random set of samples collected from an Exposure Area may
not be representative of the true average in the Exposure Area ("sampling variability"). The
following sections describe statistical approaches for characterizing the uncertainty in concentration
values for individual samples and in the mean of multiple samples.

7.1 Uncertainty in Individual Sample Values Due to Poisson Variation

All analytical results are associated with some degree of measurement error. That is, repeat analysis
of multiple independent aliquots from the same sample usually do not yield identical results. This
applies equally to analysis of asbestos and traditional wet chemistry materials.

For asbestos, for a single analysis of a sample, the concentration is estimated as:

C = N-S = N/V

where:

C = Concentration (f/cc)
N = Number of countable asbestos fibers observed
S = Analytical sensitivity (cc"1)
V = Volume of air (cc) that passed through the area of filter examined

However, because N (the number of structures observed in the area of filter examined) is a Poisson
random variable, the value of C is uncertain. The probability density function (PDF) that
characterizes the uncertainty around the observed concentration is given by (Box and Tiao 1992):

PDF(C) ~ CHISQ(2-N+1) / (2-V)

where:

CHISQ(u) = Chi-squared distribution function with u degrees of freedom

11
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Because N = C-V, the uncertainty distribution around the observed count of N may be expressed as:

PDF(N) ~ 0.5-CHISQ(2-N+1)

Figure 4 shows the uncertainty PDFs for three hypothetical samples with counts of 0, 3, or 10
structures. As seen, for a sample with a count of zero (Panel A), the uncertainty distribution
includes zero (it is the most likely value), but the distribution is right skewed and extends out to
include plausible values as high as 2 or even higher. As the observed count becomes larger, the
uncertainty distribution becomes more nearly centered on the sample observation, and tends to
become more symmetric (Panels B and C).

Note that if a single sample has been analyzed more that one time and the results are pooled (see
Section 3.1), this same approach may be used to characterize the uncertainty in the pooled analysis.

At the Libby Site, each analytical measurements should be reported with a description of the
statistical uncertainty around the measurement. The statistic recommended for normal reporting is
the two-sided 90% CI (5th percentile to the 95th percentile). This interval will include the true

concentration in approximately 90% of all samples, and there is 95% confidence that the true
concentration is less than or equal to the upper bound. However, other confidence intervals may be
presented when this is considered to be important in proper characterization and interpretation of
the data.

7.2 Uncertainty in the Mean of Multiple Samples with Poisson Variation

In cases where multiple samples have been collected from an exposure area and pooling is not
considered to be appropriate, uncertainty in the mean concentration that is attributable to random
Poisson variation in the analytical count can be characterized using Monte Carlo simulation, as
follows:

Step 1. For each sample, specify the uncertainty distribution around the observed
concentration as described above:

PDF(Cj) ~ CHISQ(2-Nj+l) / (2-Vj)

Step 2. Using an appropriate computer software application, draw one random value from
each sample and compute the mean.

Step 3. Repeat Step 2 many times. Select the 95th percentile of the means as a conservative
estimate of the true sample mean.

12
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It is important to stress that this approach evaluates only the uncertainty arising from random
Poisson variation in count, and does not include uncertainty due to variation in concentration over
time and space. Thus, the UCL-based on Monte Carlo simulation will usually underestimate the
combined UCL, except in special cases where there is very little spatial or temporal variability
between samples. An approach for characterizing uncertainty from both sources is presented in the
next section.

7.3 Uncertainty in the Mean of Multiple Samples Due to Poisson Measurement Error
Combined with Spatial or Temporal Variability

When a set of samples is collected from an exposure area in which concentration varies over space
or time, the resulting data values include the between-sample variability that arises from both
analytical measurement error in individual samples and from between-sample temporal or spatial
variability. The mathematical procedure for computing the 95% UCL of the mean for a data set

depends on the attributes of the data set. In some cases, the distribution of values may be well
approximated by a parametric distribution (normal, lognormal, gamma), and the UCL may be

computed using an equation appropriate for the underlying distribution. In other cases, the data
may not be well approximated by a parametric distribution, and estimation of the UCL may
achieved through non-parametric procedures (e.g., Chebychev inequality, bootstrapping).

7.3.1 Attributes of Data Sets from Libby

Summary statistics for five example data sets from Libby are presented below:

Set

1
2
3
4
5

Description

Ambient air (all)3

Ambient air (re-analyzed)
Personal air (disturbed soil)
Personal indoor air
Stationary indoor air

N

404
33
67
21
31

Detect.
Freq.

15%
45%
54%
86%
65%

Mean
Sens.
(cc'1)

0.00248
0.00010
0.00270
0.00036
0.00007

Mean
Cone,
(s/cc)

0.00065
0.00021
0.0507

0.00119
0.00017

Min
Detect
(s/cc)

0.00020
0.00007
0.00096
0.00007
0.00006

Max
Detect
(s/cc)

0.03327
0.00241

1.343
0.0066

0.00080

As seen, based on these 5 examples, some data sets from Libby may be characterized by relatively
high non-detect frequencies, and most appear to be characterized by a wide range of values (usually
2-3 orders of magnitude or more between the minimum and maximum detect). In general,
statistical evaluation is especially difficult for data sets that are moderately to heavily censored and
are highly variable.

3 Represents all ambient air samples collected prior October 2006, when the Outdoor Ambient Air Monitoring Program
was implemented.

13



EXTERNAL REVIEW DRAFT
APPLICABLE FOR USE AT THE LIBBYSUPERFUND SITE ONLY

Figure 5 presents log-probability plots for the 5 data sets evaluated above. Detects are shown as
solid symbols, while non-detects are shown as open symbols4. As seen, the detects tend to be
moderately well-fit by a straight line, indicating that an assumption of lognormal variation between
samples may be reasonable in most cases. Assuming lognormality, and ignoring the contribution of
Poisson measurement error, the parameters of the lognormal distribution may be crudely estimated
from the parameters of the best fit line through the detects (Gilbert 1987):

a = slope
u = intercept

The corresponding linear space parameters are computed from the log-space parameters as follows:

mean = exp(u + 0.5-a2)
GSD = exp(o)

As seen in Figure 5, the value of GSD (an indication of the degree of between-sample variability) is

quite large in most cases, with estimated values above 5 in four out of the five data sets. The GSD
of 35.8 for data set 3 (activity based samples) is especially high because the data set is composed of

samples that span a wide range of soil levels (ranging from clean fill to soil with LA above 1%).

7.3.2 Evaluation of ProUCL for Calculating the UCL

EPA has developed a software package (ProUCL) and guidance for how to compute a UCL value
for a given data set (USEPA 2002, 2004). In brief, the data set is entered into ProUCL and the
software computes the UCL based on a series of alternative parametric and non-parametric
methods. Then, based on an analysis of the attributes of the data set (magnitude of between-sample

variability, number of samples, degree of skewness), the software recommends one of the UCL
values as being most appropriate.

In order to evaluate the performance of ProUCL for data sets similar to the examples described
above, a series of synthetic data sets of 15 samples each were generated using Monte Carlo
simulation, with varying levels of measurement error (modeled as a Poisson random variable)
and/or spatial variability (modeled as a lognormal random variable). For each random data set, the
95% UCL was computed using the Chebychev inequality method, since this was the equation
selected by ProUCL for each of the five example data sets:

4 The plotting position for non-detects is arbitrary
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UCL < mean + ̂ (\la}-\- stdev I -Jn

• The resulting UCL value was scored either as "pass" (UCL > true mean) or as "fail" (UCL < true
mean). The results are summarized in Figure 6. As seen, the failure rate of the Chebychev UCL
increases as the degree of temporal/spatial variability increases, being < 5% only when the
spatial/temporal variability is relatively low (GSD = 2.3). The magnitude of the measurement error
and the detection frequency appears to have relatively, little effect.

Because it appears likely that most data sets from Libby will tend to have GSD values larger than 2-
3, it is concluded that ProUCL is unlikely to yield UCL values that can be relied on to have a high
probability of exceeding the true (but unknown) mean. For this reason, ProUCL will not be used as
the main statistical tool for estimating UCLs for data sets at Libby.

7.3.3 Other Methods for Estimating the UCL

a. Fitting to a Poisson-Lognormal (PLN) Distribution

Based on the log-probability plots shown in Figure 5, it appears that an assumption of lognormaliry
may be reasonable for air data sets from Libby (at least for the 5 examples provided). If so, then the
approach for computing the 95% UCL may be based on the equations appropriate for a lognormal
distribution, as described in USEPA (1992):

UCL = exp[u + 0.5-a2 + a-H / sqrt(n-l)]:

The values of \a and a may be estimated by fitting the data set to a Poisson-lognormal (PLN)
distribution, as described by Haas et al (1999). The mathematical details are provided in
Attachments.

Figure 7 shows the fraction of all 95% UCL values generated by this approach that are greater than
or equal to the true mean as a function of the underlying variability (GSD = 5 or 10) and as a
function of the ratio of the true concentration to the analytical sensitivity. As seen, the UCL
coverage (the fraction of all UCLs that equal or exceed the true mean) tends to increase as the
average number of counts in the sample increases, approaching a maximum of slightly less than
95% when the average count is 10 or above. Because the goal is to achieve 95% coverage, the
method was modified to compute the 97.5% UCL rather than the 95% UCL, as shown in Figure 8.
As seen, this yields a coverage of approximately 95% when the average number of counts is 10 or
above. However, coverage tends to drop off for cases where the average count is less than 10.
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b. Two-Step Bootstrap Method

A second method for estimating the 95% UCL of a data set that combines Poisson measurement
error with an underlying lognormal (or other) sampling distribution is bootstrapping. In
bootstrapping, the observed data set is used to generate many alternative data sets by random
sampling with replacement, and the 95th percentile of the bootstrap means is taken as an estimate of
the 95% UCL of the sample mean. However, this simple (1-step) method does not account for the
variation due to Poisson measurement error. To account for this added source of variation, a second
step is added to the method. In this approach, the first step is generation of a non-parametric
bootstrap sample, as above. Then, for each observation in the bootstrap sample, a new
concentration value is generated by making a random draw from the uncertainty distribution around
the observation (concentration value), given by CHISQ(2N+1) / (2V).

Figure 9 shows the UCL coverage for this method. As seen, UCL coverage tends to be lower than
95% when the average count begins to exceed 1.0, but is high when the average count is low. Note
that this pattern is essentially the opposite of what is seen for the PLN-Land approach (Figures 7
and 8). That is, data sets that tend to have low UCL coverage using the PLN-Land method will tend

to have high UCL coverage using the 2-step bootstrap method.

c. Side-by-Side Comparison of Method Performance

In order to compare the effectiveness of these two approaches for computing UCL values, random
data sets of varying size and with varying degrees of sampling variability (controlled by setting the
size of the GSD) and Poisson measurement error (controlled by setting the ratio of the true mean
concentration and the analytical sensitivity, C/S) were generated using Monte Carlo simulation as
described above, and the UCL for each data set was generated using each method. The results were
assessed by dividing each UCL by the true mean of the lognormal distribution from which the data

set was drawn, and examining the cumulative distribution function (CDF) of the resulting ratio.
The "ideal" attributes of such a CDF is there is high coverage (i.e., the percent of all UCL values
that are equal to 1.0 is > 95%), and there is a relatively low fraction (e.g., < 30%) of all values larger
than about 3.0. If the CDF of values were to achieve this pattern, then the probability of a Type I
error would be < 5%, and the probability of a Type II error would likely be within acceptable
bounds.

The results are shown in Figure 10. This figures compares the CDFs of the UCL/mean ratio for the
PLN-Land method to the two-step bootstrap method for 16 different combinations of samples size
(10, 25, 50 or 100) and four different detection frequencies (0-20%, 21-40%, 41-60%, and > 60%).
Inspection of these panels reveals the following main points:
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• For low detection frequencies (< 20%), the two-step bootstrap method yields UCLs with
higher coverage than the PLN-Land method, independent of sample size. In addition, the
bootstrap CDFs are narrower and.steeper than for the PLN-Land method, so there is a lower
frequency of excessively high UCL values. Based on this, the two-step bootstrap method is
identified as the preferred method when detection frequencies are < 20%.

• For detection frequency of 21-40%, the UCL coverage is generally similar between the two-
step bootstrap method and the PLN-Land method. However, as noted above, the bootstrap
CDFs tend to be steeper than for the PLN-Land approach, limiting the number of large
values. Based on this, the two-step bootstrap method is identified as the preferred method
when detection frequencies are 21 -40%.

• For detection frequencies greater than 40%, the UCL coverage is better for the PLN-Land
method than the two-step bootstrap. Thus, even though the bootstrap curves tend to be
steeper, the PLN-land method is preferred because of the better UCL coverage.

• For any specified detection frequency (which is related to the ratio of concentration and
analytical sensitivity), increasing the sample size tends to increase the UCL coverage and
decrease the fraction of high values, especially for the PLN-Land method. At high sample
size and high detection frequency, the two methods tend to approach each other.

7.5 Default Guideline

Because air data sets from Libby often have a relatively high non-detect frequency and usually have
a relatively high degree of skewness, calculation of 95% UCL values is difficult. Tests using EPA's
standard software package for computing UCLs (ProUCL) indicate that this software package does
not handle this type of data set well, this method will not be relied on as the primary analysis tool at
the Libby site.

The best alternative approach available at present appears to depend on the attributes of the data set.

For data sets with a detection frequency of < 40%, the 2-step bootstrap method appears to yield
UCLs with good coverage and a relatively low probability of excessively high values. For data sets

with higher detection frequencies, the UCL coverage of the bootstrap method begins to decrease
and the PLN-Land method becomes preferred.

To facilitate implementation of this approach, an executable program has been developed that
accepts as input a site-specific data set (n paired values of count and volume), and computes the
UCL by the 2-step bootstrap method and also computes the values of mu and alpha derived by PLN
fitting method. These parameters may be used to compute the PLN-Land UCL externally. This
tool is provided as Attachment 4.
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Region 8 will continue to investigate methods for estimating the UCL of the mean for sample sets
similar to those expected to occur in Libby, and may revised the recommended approach when
improved statistical techniques are identified.

8.0 CONCLUSIONS

At the Libby Superfund Site, available data support the following conclusions regarding the
estimation of LA in samples of air or dust:

• Estimates of LA concentration in air do not differ substantially when measured using ISO
10312 and AHERA counting rules, and results may be compared and combined for data
evaluation. However, each data user must consider the pros and cons of this approach for
their intended data use, and document such considerations and supporting rationale when
evaluating the data.

• Paired data that compare ISO and AHERA results are not available for samples of dust, but
the frequency of particles in dust samples that would be counted differently by the two

methods is low. Thus, it is considered likely that dust samples analyzed by ISO and
AHERA will also generally be similar, and hence they may also be combined across
methods. However, each data user must consider the pros and cons of this approach for their
intended data use, and document such considerations and supporting rationale when
evaluating the data.

• In some (but not all) samples of air, estimates of LA concentrations may be several fold
higher when measured using an indirect preparation compared to a direct preparation. Thus,
use of the indirect results may tend to overestimate exposure and risk estimates in some
cases. Because of the low frequency of indirect preparations for air samples at the Libby
Site, this is likely to be a minor source of uncertainty in most cases, but should be identified
as a source of uncertainty whenever exposure point concentration values are based primarily
on indirect samples.

• When computing the best estimate of the arithmetic mean concentration of asbestos for an
exposure point, all non-detect values must be evaluated using a concentration of zero. This
is in contrast to the approach used for most other chemicals, where '/•> the detection limit is
assigned to non-detects. However, the analytical sensitivity in microscopic analyses for
asbestos is not analogous to a detection limit in a wet chemistry analysis, and use of Vi the
sensitivity as a surrogate for asbestos non-detects may lead to a substantial overestimate of
the true mean of a group of samples.
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• Individual sample results should be accompanied by a characterization of the uncertainty in
the values. The 2-sided 90% confidence interval is recommended for most cases. However,
other confidence intervals and supporting justification for its use may be presented when it
is considered to be important in proper characterization and interpretation of the data.

• Uncertainty in the mean concentration of a data set arises from the combined effect of
analytical measurement error and temporal or spatial sampling variability. The best method
for estimating the UCL of the mean depends on the attributes of data set. Based on analyses
performed to date, the-two-step bootstrap method is best for samples with low detection
frequency (<40%), while the PLN-Land method is preferred for data sets with higher
detection frequencies. This approach for estimating UCL values may be refined in the
future.

It is important to stress that these conclusions and recommendations may not apply to other forms
of asbestos or to data from other sites.
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TABLE 1
SUMMARY OF 31 AIR SAMPLES ANALYZED BY DIRECT AND INDIRECT PREPARATION

Sample

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Index ID

1R-04986
1R-08838
1R-14215
1R- 14387
1R-14413
1R-14508
I R- 14528
1R-14660
1R-14851
1R- 14909
1R- 15074
1R-21599
1R-21808
1R-29025
1R-04987

1R45349
1R-05586
1R- 14553
1R-14217
1R-23338
1R-07741

1R-14725
IR-14733
1R-29026
1R-14416
1R- 14570
1R-21585
1R-26H6
1R-28513
1R-31263
1R-31264

Sample
Date

5/24/01
9/5/01
7/23/02
8/12/02
8/20/02
8/12/02
8/16/02
8/20/02
8/28/02
9/5/02

9/13/02
7/15/03
7/30/03
5/17/05

5/24/01
6/19/01
6/27/01
8/16/02
7/23/02
10/1/03

8/16/01
8/22/02
mi/02
5/17/05
8/19/02
8/19/02

7/14/03
8/13/04

1/7/05
6/22/05
6/22/05

Property Description

Rainy Creek Rd
KDC Bluffs
KDC Flyway
Rainy Creek Rd
Rainy Creek Rd
Rainy Creek Rd
Rainy Creek Rd
Rainy Creek Rd
Rainy Creek Rd
Rainy Creek Rd
Rainy Creek Rd
Rainy Creek Rd
Rainy Creek Rd
1511GallatinAve
Rainy Creek Rd
Screening Plant
Screening Plant
156 S. Central Rd
KDC Flyway
Rainy Creek Rd
Screening Plant Flyway
Rainy Creek Rd
Rainy Creek Rd
ISllGallatinAve
Rainy Creek Rd
156 S. Central Rd
Rainy Creek Bank
Rainy Creek Rd - S Frontage
4000 Pipe Creek Rd
105 W. 2nd St
105 W. 2nd St

Location

Haul Rd loop
Property
Property
Road
Road
Road
Road
Road
Road
Road
Road
Road
Mine
Attic
Adj.#19Terrance
Auto
Property
House
Property

Road
Property
Road
Road
Attic
Road
House
Road
Property
Property
Parking Lot
Parking Lot

Land Use

Industrial
Residential
Industrial
Industrial
Industrial
Industrial
Industrial
Industrial
Industrial
Industrial
Industrial
Industrial
Industrial

Residential
Industrial

Residential
Residential
Residential
Industrial
Industrial

Mine
Industrial
Industrial

Residential
Industrial

Residential
Residential
Residential
Commercial
Residential
Residential

Location

Outdoor
Outdoor
Outdoor
Outdoor
Outdoor
Outdoor
Outdoor
Outdoor
Outdoor
Outdoor
Outdoor
Outdoor
Outdoor
Indoor

Outdoor
Outdoor
Outdoor
Indoor

Outdoor
Outdoor
Outdoor
Outdoor
Outdoor
Indoor

Outdoor
Indoor
Indoor

Outdoor
Outdoor
Outdoor
Outdoor

Type

Stationary
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal

Stationary
Stationary
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal

Stationary
Stationary
Stationary

Personal Activity Description

Labor - water hose

Laying Curlex
Water Hose Operator
Decon
Decon
Laborer
Decon
Decon
Laborer
Upper decon
Truck Driver (Water)
Operator-upper dozer
Bulk VCI Removal

Drive -Volvo #11
Vacuuming attic
Laying Curlex
Upper Dozer
Operate - Bulldozer, upper level
Decon
Deconning Truck
Bulk VCI Removal
Decon
Cleaning attic
Water Truck Driver
Water Hose Operator

LAAirConc(s/cc)

Direct
0.096
0.097
0.147
0.143
0.216
0.166
1.102
0.128
0.104
0.321
0.128
0.329
0-543
1.408
0.045
0.065
0.082
0.421
0.236
1.299
0.147
0.141 '
0.239
0.859
0.187
0.094
0.321
1.262
0.055
0.056
0.064

Indirect
0.363
0.221
0.384
1.164
1.175
0.298
11.893
1.321
1.079
1.124
0.971
4.535
5.994
2.332
0.033
0.038
0.053
0.664
0.130
0.882
0.168
0.088
0.235
0.732
0.044
0.044

0.081
0.188
0.000
0.004
0.008

Ratio of
y-iCone
3.78
2.28
2.62
8.13
5.44

1.80
10.79
10.36
10.36
3.50
7.56
13.80
11.04
1.66
0.74
0.59
0.65
1.58
0.55
0.68
1.15
0.62
0.98
0.85
0.24
0.47

0.25
0.15
0.00
0.08
0.13

Statistical test

Indirect > Direct
Indirect > Direct
Indirect > Direct
Indirect > Direct
Indirect > Direct
Indirect > Direct
Indirect > Direct
Indirect > Direct
Indirect > Direct
Indirect > Direct
Indirect > Direct
Indirect > Direct
Indirect > Direct
Indirect > Direct

Not different
Not different
Not different
Not different
Not different
Not different
Not different
Not different
Not different
Not different

Direct > Indirect
Direct > Indirect
Direct > Indirect
Direct > Indirect
Direct > Indirect
Direct > Indirect
Direct > Indirect
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FIGURE 1
COMPARISON OF DIRECT AND INDIRECT TEM RESULTS

FOR 31 AIR SAMPLES FROM LIBBY
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FIGURE 2
LA PARTICLE SIZE DISTRIBUTIONS FOR

31 PAIRED DIRECT AND INDIRECT PREPARATIONS

Graphs are based on paired results for the 31 samples analyzed by both direct and indirect preparation methods
[N=754 structures in direct analysis, 1,617 structures by indirect analysis].
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FIGURE 3
EFFECT OF ALTERNATIVE SURROGATE VALUES FOR NON-DETECTS

ON THE EXPECTED SAMPLE MEAN FOR ASBESTOS
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FIGURE 4. COUNTING UNCERTAINTY IN SINGLE SAMPLES
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Panel A: Ambient Air (All)

FIGURE 5. LOG-PROBABILITY PLOTS OF EXAMPLE AIR DATA SETS

Panel B: Ambient Air (33 reanalyzed)
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FIGURE 6
EFFECT OF SAMPLING VARIABILITY AND MEASSUREMENT ERROR

ON CHEBYCHEV INEQUALITY UCL VALUES
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FIGURE 7
UCL COVERAGE FOR THE PLN-LAND95 METHOD
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FIGURE 8

UCL COVERAGE FOR THE PLN-LAND97.s METHOD
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FIGURE 9
UCL COVERAGE FOR THE TWO-STEP BOOTSTRAP METHOD
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FIGURE 10
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ATTACHMENT 1

STATISTICAL COMPARISON OF TWO POISSON RATES
BASED ON THE RATIO IN RATES

1.0 Basic Equations

The equations presented below are from Nelson (1982). The purpose of the statistical test is to
compare two Poisson rates:

Rate 1 = Y /1
Rate 2 = X / s

where

Y and X = The number of "hits" (e.g., the numbers of particles counted)
t and s = The "size" of the observations (e.g., the effective volume of air examined)

The test is based on evaluating the uncertainty bounds around the ratio of the rates:

p = Rate 1 / Rate 2 = (Y/t) / (X/s)

Let y represent the confidence interval around the ratio. Limits on the two-sided 100y%
confidence interval for p are:

p(lower bound) = {(Y/t)/[(X+l)/s]> / F[(l-Hy)/2; 2X+2, 2Y]

p(upper bound) = {[(Y+l)/t]/(X/s)} • F[(l+y)/2;2 Y+2, 2X]

where:

F[x;dfl,df2] = F distribution with dfl and df2 degrees of freedom

2.0 Interpretation

• If the confidence interval includes the value 1, the data are consistent with the hypothesis
that Rate 1 and Rate 2 are not different from each other at the [100(l-y)]% significance
level.

Al-1



EXTERNAL REVIEW DRAFT
APPLICABLE FOR USE AT THE LIBBY SUPERFUND SITE ONLY

• If the lower bound on the confidence interval around p exceeds 1, then Rate 1 is greater
than Rate 2 at the [100(l-y)]% significance level

• If the upper bound on the confidence interval around p is less than 1, then Rate 2 is
greater than Rate 1 at the [100(l-y)]% significance level

3.0 References

Nelson W. 1982. Applied Life Data Analysis. John Wiley & Sons, New York.
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ATTACHMENT 2

MONTE CARLO SIMULATION OF MEASUREMENT ERROR
UNCERTAINTY IN THE MEAN OF MULTIPLE SAMOPLE

See Microsoft Excel Spreadsheet entitled
"Uncertainty in the Mean of 5 Data Sets.xls"
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ATTACHMENT 3

FITTING A DATA SET TO A
POISSON-LOGNORMAL MODEL
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ATTACHMENT 3

FITTING A DATA SET TO A
POISSON-LOGNORMAL MODEL

Basic Model

Let Ck represent the concentration of LA in a sample of air (s/cc) collected from some specified
location. Assume that a set of n individual samples collected from this location have
concentration values that are distributed lognormally:

Ck~LN(u,a)

The true value of the concentration of LA in any random sample Ck can not be measured exactly,
but can only estimated by microscopic analysis. This is because the number of structures Xk
observed in an analysis of some volume Vk from that sample is a random Poisson variable, given
by:

xk ~ Poisson[Ck'Vk)]

Poisson Lognormal (PLN) Distribution Function

The situation described above may be characterized by a mixing distribution that captures both
the large scale lognormal variability and the within-sample Poisson variability (Haas et al. 1999).
The probability density for the Poisson-lognormal model (PLN) is:

Prob(x>., .. _^,— exp(-CF)
x\\j

where:

C = concentration (LA s/cc)
V = volume of sample analyzed (cc)
x = number of LA structures observed (0, 1, 2, 3,...)
u. = log-mean of the distribution of C
a = log-standard deviation of the distribution of C
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Figure A3-1 illustrates the shape of the probability density curve for three example cases where
the arithmetic mean concentration is 0.001 s/cc, the volume of air evaluated is 1,000 cc (this
equals a sensitivity of 0.001 cc"1), and the variability corresponds to GSD values of 3, 5, or 10.

Evaluation of the Poisson-Lognormal Probability Density Function.

To evaluate the Poisson-lognormal density function, Haas et. al. (1999) recommended re-
expressing the integrand in a form suitable for Gauss-Hermite numerical quadrature. However,
in testing this approach for use at the Libby Site, it was discovered that for many combinations of
{x;V,(j,,o}, Gauss-Hermite quadrature could not dependably provide the precision necessary for
this analysis. Therefore, for the purposes of use at the Libby Site, the PLN probability density
was evaluated by dividing the integral into two parts (0 to 100 and 100 to infinity), and using a
combination of IMSL numerical quadrature routines (intjcn for the first part and int_fcn_inffor
the second part). Both routines are based on a globally adaptive technique using Gauss-Kronrod
rules. To minimize scaling issues in the numerical integration, concentration values were
expressed in units of s/L rather than s/cc.

Maximization of the Poisson-Lognormal Log-Likelihood

Fitting the Poisson-lognormal distribution to a set of n paired observations of count (Xk) and
volume (Vk), designated by the vectors (x,V), requires maximization of the sample log-
likelihood: •

which was accomplished using the IMSL quasi-Newton routine min_uncon_multivar.

Figure A3-2 provides a graphical display of the PLN fit to an example data set (purely
hypothetical) of 100 samples (provided in Table A3-1). In this example, the fitted parameters
were u = 1 .328 and a = 1 .2399.

References:

Haas CN, Rose JB, Gerba CP. 1999. Quantitative Microbial Risk Assessment. John Wiley and
Sons, New York.
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IMSL C Functions for Scientific Programming, Version 1.0. Visual Numerics, Houston, Texas.
http://www.vni.com

A3-4



EXTERNAL REVIEW DRAFT
APPLICABLE FOR USE AT THE LIBBY SUPERFUND SITE ONLY

FIGURE A3-1

Poisson-lognormal Probability Density Function for fixed
Arithmetic Mean = 0.001 and Volume = 1000

0.0001
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FIGURE A3-2
FIT OF THE PLN DISTRIBUTION TO AN EXAMPLE DATA SET
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TABLE A3-1
EXAMPLE DATA USED IN FIGURE A3-2

Sample Count Volume (L) Sample Count Volume (L)
1 9 3.14
2 2 2.70
3 2 2.08
4 3 2.00
5 4 0.72
6 1 1.16
7 16 2.70
8 5 0.46
9 12 2.68
10 1 0.98
11 9 0.76
12 30 1.90
13 7 2.08
14 9 2.58
15 3 1.66
16 2 3.32
17 4 0.58
18 0 2.50
19 8 2.70
20 10 1.68
21 1 0.18
22 21 2.62
23 15 3.82
24 1 0.22
25 32 2.42
26 22 1.90
27 6 2.70
28 537 3.10
29 1 1.14
30 20 1.34
31 15 1.66
32 2 3.72
33 3 2.00
34 3 2.68
35 0 3.00
36 0 1.40
37 17 3.16
38 9 .2.72
39 4 2.36
40 7 1.26
41 0 0.26
42 20 0.76
43 17 2.62
44 0 1.82
45 4 0.78
46 23 3.76
47 36 1.46
48 24 1.14
49 9 2.40
50 38 3.56

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
.69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

2
26
10
1
3
1
20
1
78
11
8
6
1
56
29
6
2
3
4
9
0
6
46
0
53
10
8
7
30
0
2
1
3
1
7
9
71
14
8
10
1
8
13
1
127
2
2
18
12
0

1.62
4.00
3.94 .
2.76
1.92
1.52
2.56
0.62
1.72
2.38
0.80
2.82
1.90
3.94
2.10
3.80
0.64
3.82
2.32
1.50
1.48
3.46
2.58
0.12
2.52
1.28
0.58
2.32
2.92
0.24
0.74
0.24
1.54
0.12
1.76
1.54
3.38
3.66
3.46
2.14
0.86
0.10
2.38
0.84
2.84
0.36
0.34
1.38
3.80
0.56
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APPENDIX A

1,837 Samples Analyzed by ISO 10312 and AHERA

See Microsoft Excel Spreadsheet "AppA_AHERA vs ISO.xls"
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APPENDIX B

16 Air Samples Evaluated by Direct and Indirect Analysis

See Microsoft Excel Spreadsheet "AppB_I vs D_Original 16.xls"



EXTERNAL REVIEW DRAFT
APPLICABLE FOR USE AT THE LIBBYSUPERFUND SITE ONLY

APPENDIX C

Study Design and Selection of 31 Air Samples for
Re-Analysis Using Indirect Preparation
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APPENDIX D

Detailed Results for 31 Air Samples Analyzed
By Both Direct and Indirect Preparation

See Microsoft Excel Spreadsheet "AppDJ vs D Pilot Results.xls"


